148 2 Maximal Functions, Fourier Transform, and Distributions

where the equality 7(f)(x+y) = H(x+y) holds a.e. in y. Thus the continuous
functions Hy and 77*H are equal a.e. and thus they must be everywhere equal,
in particular, when y = 0. This proves that H,(0) = H(x), which is a restatement
of (2.5.3). O

We now return to Lemmas 2.5.3 and 2.5.4. We begin with Lemma 2.5.3.

Proof. Consider first the multi-index ot = (0,...,1,...,0), where 1 is in the jth entry
and 0 is elsewhere. Let ¢; = (0,...,1,...,0), where 1 is in the jth entry and zero
elsewhere. We have
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since both of these expressions are equal to
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and 7 commutes with translations. We will let 7 — 0 in both sides of (2.5.4). We
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from which it follows that for |h| < 1/2 we have
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The integrand on the left-hand side of (2.5.4) is bounded by the integrable function
IT(f)(»)|Cyy (|| +1)™™ and converges to T(f)(y) d;¢(y) as h — 0. The Lebesgue
dominated convergence theorem yields that the integral on the left-hand side of
(2.5.4) converges to

T(f)(y)9j9(y)dy = —(9,T(f),9), (2.5.5)
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where 9,7 (f) is the distributional derivative of T'(f). Moreover, for a Schwartz
function f we have

hej _ 1
Ly})lﬂy):/o 3;f (y—hte;)dt,

which converges to 9, f(y) pointwise as 4 — 0 and is bounded by C}, (1 +|y|)™ for
|h| < 1/2 by an argument similar to the preceding one for ¢ in place of f. Thus
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by the Lebesgue dominated convergence theorem. The boundedness of T from L”
to L9 yields that
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Since ¢ € L, by Holder’s inequality, the right-hand side of (2.5.4) converges to
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as h — 0. This limit is equal to (2.5.5) and the required conclusion follows for
o =(0,...,0,1,0,...,0). The general case follows by induction on |ct|. O

We now prove Lemma 2.5.4.

Proof. Let R > 1. Fix a % function @ that is equal to 1 in the ball |x| < R and
equal to zero when |x| > 2R. Since h is in L4(R"), it follows that @gh is in ! (R™).

We show that (pRh is also in L'. We begin with the inequality
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|o|<n+1
which is just a restatement of (2.2.3). Now multiply (2.5.8) by \(;R\h(x)\ to obtain
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where we used Leibniz’s rule (Proposition 2.3.22 (14)) and the fact that all deriva-
tives of g are pointwise bounded by constants depending on R.
Integrate the previously displayed inequality with respect to x to obtain
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Therefore, Fourier inversion holds for @rh (see Exercise 2.2.6). This implies that
@Qrh is equal a.e. to a continuous function, namely the inverse Fourier transform of
its Fourier transform. Since ¢g = 1 on the ball B(0,R), we conclude that 4 is a.e.
equal to a continuous function in this ball. Since R > 0 was arbitrary, it follows that



