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where the equality T ( f )(x + y) = H(x + y) holds a.e. in y. Thus the continuous
functions Hx and τ−xH are equal a.e. and thus they must be everywhere equal,
in particular, when y = 0. This proves that Hx(0) = H(x), which is a restatement
of (2.5.3). �

We now return to Lemmas 2.5.3 and 2.5.4. We begin with Lemma 2.5.3.

Proof. Consider first the multi-index α =(0, . . . ,1, . . . ,0), where 1 is in the jth entry
and 0 is elsewhere. Let e j = (0, . . . ,1, . . . ,0), where 1 is in the jth entry and zero
elsewhere. We have∫

Rn
T ( f )(y)

ϕ(y+he j)−ϕ(y)
h

dy =
∫

Rn
ϕ(y)T

(
τhe j( f )− f

h

)
(y)dy (2.5.4)

since both of these expressions are equal to∫
Rn

ϕ(y)
T ( f )(y−he j)−T ( f )(y)

h
dy

and T commutes with translations. We will let h→ 0 in both sides of (2.5.4). We
write

ϕ(y+he j)−ϕ(y)
h

=
∫ 1

0
∂ jϕ(y+hte j)dt ,

from which it follows that for |h|< 1/2 we have∣∣∣∣ϕ(y+he j)−ϕ(y)
h

∣∣∣∣≤ ∫ 1

0

CM dt
(1+ |y+hte j|)M ≤

∫ 1

0

CM dt
(1+ |y|− 1

2 )
M
≤ C′M

(|y|+1)M .

The integrand on the left-hand side of (2.5.4) is bounded by the integrable function
|T ( f )(y)|C′M(|y|+ 1)−M and converges to T ( f )(y)∂ jϕ(y) as h→ 0. The Lebesgue
dominated convergence theorem yields that the integral on the left-hand side of
(2.5.4) converges to ∫

Rn
T ( f )(y)∂ jϕ(y)dy =−

〈
∂ jT ( f ),ϕ

〉
, (2.5.5)

where ∂ jT ( f ) is the distributional derivative of T ( f ). Moreover, for a Schwartz
function f we have

τhe j( f )(y)− f (y)
−h

=
∫ 1

0
∂ j f (y−hte j)dt ,

which converges to ∂ j f (y) pointwise as h→ 0 and is bounded by C′M(1+ |y|)−M for
|h|< 1/2 by an argument similar to the preceding one for ϕ in place of f . Thus

τhe j( f )− f
−h

→ ∂ j f in Lp as h→ 0, (2.5.6)
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by the Lebesgue dominated convergence theorem. The boundedness of T from Lp

to Lq yields that

T
(

τhe j( f )− f
h

)
→−T (∂ j f ) in Lq as h→ 0. (2.5.7)

Since ϕ ∈ Lq′ , by Hölder’s inequality, the right-hand side of (2.5.4) converges to

−
∫

Rn
ϕ(y)T (∂ j f )(y)dy =−

〈
T (∂ j f ),ϕ

〉
as h → 0. This limit is equal to (2.5.5) and the required conclusion follows for
α = (0, . . . ,0,1,0, . . . ,0). The general case follows by induction on |α|. �

We now prove Lemma 2.5.4.

Proof. Let R ≥ 1. Fix a C ∞
0 function ϕR that is equal to 1 in the ball |x| ≤ R and

equal to zero when |x| ≥ 2R. Since h is in Lq(Rn), it follows that ϕRh is in L1(Rn).
We show that ϕ̂Rh is also in L1. We begin with the inequality

1≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1
|(−2πix)α | , (2.5.8)

which is just a restatement of (2.2.3). Now multiply (2.5.8) by |ϕ̂Rh(x)| to obtain

|ϕ̂Rh(x)| ≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1
|(−2πix)α

ϕ̂Rh(x)|

≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥(∂ α(ϕRh))∧
∥∥

L∞

≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥∂
α(ϕRh)

∥∥
L1

≤Cn(2nRnvn)
1/q′(1+ |x|)−(n+1)

∑
|α|≤n+1

∥∥∂
α(ϕRh)

∥∥
Lq

≤Cn,R(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥∂
α h
∥∥

Lq ,

where we used Leibniz’s rule (Proposition 2.3.22 (14)) and the fact that all deriva-
tives of ϕR are pointwise bounded by constants depending on R.

Integrate the previously displayed inequality with respect to x to obtain∥∥ϕ̂Rh
∥∥

L1 ≤CR,n ∑
|α|≤n+1

∥∥∂
α h
∥∥

Lq < ∞ . (2.5.9)

Therefore, Fourier inversion holds for ϕRh (see Exercise 2.2.6). This implies that
ϕRh is equal a.e. to a continuous function, namely the inverse Fourier transform of
its Fourier transform. Since ϕR = 1 on the ball B(0,R), we conclude that h is a.e.
equal to a continuous function in this ball. Since R > 0 was arbitrary, it follows that


