Exercises

2.5.1. Prove that if $f \in L^q(\mathbf{R}^n)$ and $0 < q < \infty$, then

$$\|\tau^h(f) + f\|_{L^q} \to 2^{1/q} \|f\|_{L^q}$$
 as $|h| \to \infty$.

2.5.2. Prove Proposition 2.5.14. Also prove that if $\delta_j^{h_j}$ is a dilation operator in the jth variable (for instance $\delta_1^{h_1} f(x) = f(h_1 x_1, x_2, \dots, x_n)$), then

$$\|\delta_1^{h_1}\cdots\delta_n^{h_n}m\|_{\mathscr{M}_p}=\|m\|_{\mathscr{M}_p}.$$

- **2.5.3.** Let $m \in \mathcal{M}_p(\mathbf{R}^n)$ where $1 \le p < \infty$.
- (a) If ψ is a function on \mathbf{R}^n whose inverse Fourier transform is an integrable function, then prove that

$$\|\psi m\|_{\mathscr{M}_p} \leq \|\psi^{\vee}\|_{L^1} \|m\|_{\mathscr{M}_p}.$$

(b) If ψ is in $L^1(\mathbf{R}^n)$, then prove that

$$\|\psi * m\|_{\mathscr{M}_n} \leq \|\psi\|_{L^1} \|m\|_{\mathscr{M}_n}$$

- **2.5.4.** Fix a multi-index γ and $1 \le p, q < \infty$.
- (a) Prove that the map $T(f) = f * \partial^{\gamma} \delta_0$ maps \mathscr{S} continuously into \mathscr{S} .
- (b) Prove that when $|\gamma| > 0$, then T does not extend to an element of the space $\mathcal{M}^{p,q}$.
- **2.5.5.** Let $K_{\gamma}(x) = |x|^{-n+\gamma}$, where $0 < \gamma < n$. Use Theorem 1.4.25 to show that the operator

$$T_{\gamma}(f) = f * K_{\gamma}, \qquad f \in \mathscr{S},$$

extends to a bounded operator in $\mathcal{M}^{p,q}(\mathbf{R}^n)$, where $1/p-1/q = \gamma/n$, $1 . This provides an example of a nontrivial operator in <math>\mathcal{M}^{p,q}(\mathbf{R}^n)$ when p < q.

2.5.6. (a) Use the ideas of the proof of Proposition 2.5.13 to show that if $m_j \in \mathcal{M}_p$, $1 \le p < \infty$, $||m_j||_{\mathcal{M}_p} \le C$ for all $j = 1, 2, \ldots$, and $m_j \to m$ a.e., then $m \in \mathcal{M}_p$ and

$$||m||_{\mathcal{M}_p(\mathbf{R}^n)} \leq \liminf_{j \to \infty} ||m_j||_{\mathcal{M}_p(\mathbf{R}^n)} \leq C.$$

(b) Prove that if $m \in \mathcal{M}_p$, $1 \le p < \infty$, and the limit $m_0(\xi) = \lim_{R \to \infty} m(\xi/R)$ exists for all $\xi \in \mathbf{R}^n$, then m_0 is a radial function in $\mathcal{M}_p(\mathbf{R}^n)$ and satisfies $||m_0||_{\mathcal{M}_p} \le ||m||_{\mathcal{M}_p}$. (c) If $m \in \mathcal{M}_p(\mathbf{R})$ has left and right limits at the origin, then prove that

$$||m||_{\mathcal{M}_n(\mathbf{R})} \ge \max(|m(0+)|, |m(0-)|).$$