It is a consequence of Theorem 1.3.4 that the normed spaces \mathcal{M}_p are nested, that is, for $1 \le p \le q \le 2$ we have

$$\mathcal{M}_1 \subseteq \mathcal{M}_p \subseteq \mathcal{M}_q \subseteq \mathcal{M}_2 = L^{\infty}.$$

Moreover, if $m \in \mathcal{M}_p$ and $1 \le p \le 2 \le p'$, Theorem 1.3.4 gives

$$\left\|T_{m}\right\|_{L^{2}\to L^{2}} \leq \left\|T_{m}\right\|_{L^{p}\to L^{p}}^{\frac{1}{2}} \left\|T_{m}\right\|_{L^{p'}\to L^{p'}}^{\frac{1}{2}} = \left\|T_{m}\right\|_{L^{p}\to L^{p}},$$
(2.5.16)

since 1/2 = (1/2)/p + (1/2)/p'. Theorem 1.3.4 also gives that

$$\|m\|_{\mathscr{M}_q} \le \|m\|_{\mathscr{M}_p}$$

whenever $1 \le q \le p \le 2$. Thus the \mathcal{M}_p 's form an increasing family of spaces as p increases from 1 to 2.

Example 2.5.12. The function $m(\xi) = e^{2\pi i \xi \cdot b}$ is an L^p multiplier for all $b \in \mathbf{R}^n$, since the corresponding operator $T_m(f)(x) = f(x+b)$ is bounded on $L^p(\mathbf{R}^n)$. Clearly $||m||_{\mathcal{M}_p} = 1$.

Proposition 2.5.13. For $1 \le p < \infty$, the normed space $(\mathcal{M}_p, \|\cdot\|_{\mathcal{M}_p})$ is a Banach space. Furthermore, \mathcal{M}_p is closed under pointwise multiplication and is a Banach algebra.

Proof. It suffices to consider the case $1 \le p \le 2$. It is straightforward that if m_1, m_2 are in \mathcal{M}_p and $b \in \mathbb{C}$ then $m_1 + m_2$ and bm_1 are also in \mathcal{M}_p . Observe that m_1m_2 is the multiplier that corresponds to the operator $T_{m_1}T_{m_2} = T_{m_1m_2}$ and thus

$$\|m_1m_2\|_{\mathscr{M}_p} = \|T_{m_1}T_{m_2}\|_{L^p \to L^p} \le \|m_1\|_{\mathscr{M}_p}\|m_2\|_{\mathscr{M}_p}$$

This proves that \mathcal{M}_p is an algebra. To show that \mathcal{M}_p is a complete normed space, consider a Cauchy sequence m_j in \mathcal{M}_p . It follows from (2.5.16) that m_j is Cauchy in L^{∞} , and hence it converges to some bounded function m in the L^{∞} norm; moreover all the m_j are a.e. bounded by some constant C uniformly in j. We have to show that $m \in \mathcal{M}_p$. Fix $f \in \mathcal{S}$. We have

$$T_{m_j}(f)(x) = \int_{\mathbf{R}^n} \widehat{f}(\xi) m_j(\xi) e^{2\pi i x \cdot \xi} d\xi \to \int_{\mathbf{R}^n} \widehat{f}(\xi) m(\xi) e^{2\pi i x \cdot \xi} d\xi = T_m(f)(x)$$

a.e. by the Lebesgue dominated convergence theorem, since $C|\hat{f}|$ is an integrable upper bound of all integrands on the left in the preceding expression. Since $\{m_j\}_j$ is a Cauchy sequence in \mathcal{M}_p , it is bounded in \mathcal{M}_p , and thus $\sup_j ||m_j||_{\mathcal{M}_p} < +\infty$. An application of Fatou's lemma yields that

$$\begin{split} \int_{\mathbf{R}^n} |T_m(f)|^p \, dx &= \int_{\mathbf{R}^n} \liminf_{j \to \infty} |T_{m_j}(f)|^p \, dx \\ &\leq \liminf_{j \to \infty} \int_{\mathbf{R}^n} |T_{m_j}(f)|^p \, dx \\ &\leq \liminf_{j \to \infty} \left\| m_j \right\|_{\mathscr{M}_p}^p \left\| f \right\|_{L^p}^p, \end{split}$$

156