2.5.4 Characterizations of $\mathscr{M}^{1,1}\left(\mathbf{R}^{n}\right)$ and $\mathscr{M}^{2,2}\left(\mathbf{R}^{n}\right)$

It would be desirable to have a characterization of the spaces $\mathscr{M}^{p, p}$ in terms of properties of the convolving distribution. Unfortunately, this is unknown at present (it is not clear whether it is possible) except for certain cases.
Theorem 2.5.8. An operator T is in $\mathscr{M}^{1,1}\left(\mathbf{R}^{n}\right)$ if and only if it is given by convolution with a finite Borel (complex-valued) measure. In this case, the norm of the operator is equal to the total variation of the measure.
Proof. If T is given by convolution with a finite Borel measure μ, then clearly T maps L^{1} to itself and $\|T\|_{L^{1} \rightarrow L^{1}} \leq\|\mu\|_{\mathscr{M}}$, where $\|\mu\|_{\mathscr{M}}$ is the total variation of μ.

Conversely, let T be an operator bounded from L^{1} to L^{1} that commutes with translations. By Theorem 2.5.2, T is given by convolution with a tempered distribution u. Let

$$
f_{\mathcal{E}}(x)=\varepsilon^{-n} e^{-\pi|x / \varepsilon|^{2}}
$$

Since the functions f_{ε} are uniformly bounded in L^{1}, it follows from the boundedness of T that $f_{\mathcal{\varepsilon}} * u$ are also uniformly bounded in L^{1}. Since L^{1} is naturally embedded in the space of finite Borel measures, which is the dual of the space \mathscr{C}_{00} of continuous functions that tend to zero at infinity, we obtain that the family $f_{\mathcal{E}} * u$ lies in a fixed multiple of the unit ball of \mathscr{C}_{00}^{*}. By the Banach-Alaoglu theorem, this is a weak* compact set. Therefore, some subsequence of $f_{\varepsilon} * u$ converges in the weak ${ }^{*}$ topology to a measure μ. That is, for some $\varepsilon_{k} \rightarrow 0$ and all $g \in \mathscr{C}_{00}\left(\mathbf{R}^{n}\right)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{n}} g(x)\left(f_{\varepsilon_{k}} * u\right)(x) d x=\int_{\mathbf{R}^{n}} g(x) d \mu(x) \tag{2.5.13}
\end{equation*}
$$

We claim that $u=\mu$. To see this, fix $g \in \mathscr{S}$. Equation (2.5.13) implies that

$$
\left\langle u, \widetilde{f}_{\varepsilon_{k}} * g\right\rangle=\left\langle u, f_{\varepsilon_{k}} * g\right\rangle \rightarrow\langle\mu, g\rangle
$$

as $k \rightarrow \infty$. Exercise 2.3.2 gives that $g * f_{\varepsilon_{k}}$ converges to g in \mathscr{S}. Therefore,

$$
\left\langle u, f_{\varepsilon_{k}} * g\right\rangle \rightarrow\langle u, g\rangle .
$$

It follows from (2.5.13) that $\langle u, g\rangle=\langle\mu, g\rangle$, and since g was arbitrary, $u=\mu$.
Next, (2.5.13) implies that for all $g \in \mathscr{C}_{00}$ we have

$$
\begin{equation*}
\left|\int_{\mathbf{R}^{n}} g(x) d \mu(x)\right| \leq\|g\|_{L^{\infty}} \sup _{k}\left\|f_{\varepsilon_{k}} * u\right\|_{L^{1}} \leq\|g\|_{L^{\infty}}\|T\|_{L^{1} \rightarrow L^{1}} \tag{2.5.14}
\end{equation*}
$$

The Riesz representation theorem gives that the norm of the functional

$$
g \mapsto \int_{\mathbf{R}^{n}} g(x) d \mu(x)
$$

on \mathscr{C}_{00} is exactly $\|\mu\|_{\mathscr{M}}$. It follows from (2.5.14) that $\|T\|_{L^{1} \rightarrow L^{1}} \geq\|\mu\|_{\mathscr{M}}$. Since the reverse inequality is obvious, we conclude that $\|T\|_{L^{1} \rightarrow L^{1}}=\|\mu\|_{\mathscr{M}}$.

