2.5 Convolution Operators on L^p Spaces and Multipliers

2.5.4 Characterizations of $\mathcal{M}^{1,1}(\mathbf{R}^n)$ and $\mathcal{M}^{2,2}(\mathbf{R}^n)$

It would be desirable to have a characterization of the spaces $\mathcal{M}^{p,p}$ in terms of properties of the convolving distribution. Unfortunately, this is unknown at present (it is not clear whether it is possible) except for certain cases.

Theorem 2.5.8. An operator T is in $\mathcal{M}^{1,1}(\mathbb{R}^n)$ if and only if it is given by convolution with a finite Borel (complex-valued) measure. In this case, the norm of the operator is equal to the total variation of the measure.

Proof. If *T* is given by convolution with a finite Borel measure μ , then clearly *T* maps L^1 to itself and $||T||_{L^1 \to L^1} \le ||\mu||_{\mathscr{M}}$, where $||\mu||_{\mathscr{M}}$ is the total variation of μ .

Conversely, let *T* be an operator bounded from L^1 to L^1 that commutes with translations. By Theorem 2.5.2, *T* is given by convolution with a tempered distribution *u*. Let

$$f_{\varepsilon}(x) = \varepsilon^{-n} e^{-\pi |x/\varepsilon|^2}$$
.

Since the functions f_{ε} are uniformly bounded in L^1 , it follows from the boundedness of T that $f_{\varepsilon} * u$ are also uniformly bounded in L^1 . Since L^1 is naturally embedded in the space of finite Borel measures, which is the dual of the space \mathscr{C}_{00} of continuous functions that tend to zero at infinity, we obtain that the family $f_{\varepsilon} * u$ lies in a fixed multiple of the unit ball of \mathscr{C}_{00}^* . By the Banach–Alaoglu theorem, this is a weak^{*} compact set. Therefore, some subsequence of $f_{\varepsilon} * u$ converges in the weak^{*} topology to a measure μ . That is, for some $\varepsilon_k \to 0$ and all $g \in \mathscr{C}_{00}(\mathbb{R}^n)$ we have

$$\lim_{k \to \infty} \int_{\mathbf{R}^n} g(x) (f_{\varepsilon_k} * u)(x) \, dx = \int_{\mathbf{R}^n} g(x) \, d\mu(x) \,. \tag{2.5.13}$$

We claim that $u = \mu$. To see this, fix $g \in \mathscr{S}$. Equation (2.5.13) implies that

$$\langle u, \widetilde{f}_{\varepsilon_k} * g \rangle = \langle u, f_{\varepsilon_k} * g \rangle \to \langle \mu, g \rangle$$

as $k \to \infty$. Exercise 2.3.2 gives that $g * f_{\varepsilon_k}$ converges to g in \mathscr{S} . Therefore,

$$\langle u, f_{\varepsilon_k} * g \rangle \to \langle u, g \rangle.$$

It follows from (2.5.13) that $\langle u, g \rangle = \langle \mu, g \rangle$, and since g was arbitrary, $u = \mu$.

Next, (2.5.13) implies that for all $g \in \mathscr{C}_{00}$ we have

$$\left| \int_{\mathbf{R}^{n}} g(x) d\mu(x) \right| \leq \left\| g \right\|_{L^{\infty}} \sup_{k} \left\| f_{\varepsilon_{k}} * u \right\|_{L^{1}} \leq \left\| g \right\|_{L^{\infty}} \left\| T \right\|_{L^{1} \to L^{1}}.$$
 (2.5.14)

The Riesz representation theorem gives that the norm of the functional

$$g\mapsto \int_{\mathbf{R}^n}g(x)\,d\mu(x)$$

on \mathscr{C}_{00} is exactly $\|\mu\|_{\mathscr{M}}$. It follows from (2.5.14) that $\|T\|_{L^1 \to L^1} \ge \|\mu\|_{\mathscr{M}}$. Since the reverse inequality is obvious, we conclude that $\|T\|_{L^1 \to L^1} = \|\mu\|_{\mathscr{M}}$.