h is a.e. equal to a continuous function on \mathbb{R}^n , which we denote by *H*. Finally, (2.5.2) is a direct consequence of (2.5.9) with R = 1, since $|H(0)| \le \|\widehat{\varphi_1}h\|_{L^1}$.

2.5.2 The Transpose and the Adjoint of a Linear Operator

We briefly discuss the notions of the transpose and the adjoint of a linear operator. We first recall real and complex inner products. For f,g measurable functions on \mathbf{R}^n , we define the *complex inner product*

$$\langle f | g \rangle = \int_{\mathbf{R}^n} f(x) \overline{g(x)} \, dx,$$

whenever the integral converges absolutely. We reserve the notation

$$\langle f,g\rangle = \int_{\mathbf{R}^n} f(x)g(x)\,dx$$

for the *real inner product* on $L^2(\mathbf{R}^n)$ and also for the action of a distribution f on a test function g. (This notation also makes sense when a distribution f coincides with a function.)

Let $1 \le p, q \le \infty$. For a bounded linear operator *T* from $L^p(X, \mu)$ to $L^q(Y, \nu)$ we denote by *T*^{*} its *adjoint operator* defined by

$$\left\langle T(f) \,|\, g \right\rangle = \int_{Y} T(f) \,\overline{g} \, d\nu = \int_{X} f \,\overline{T^*(g)} \, d\mu = \left\langle f \,|\, T^*(g) \right\rangle \tag{2.5.10}$$

for f in $L^p(X, \mu)$ and g in $L^{q'}(Y, \nu)$ (or in a dense subspace of it). We also define the *transpose* of T as the unique operator T^t that satisfies

$$\langle T(f),g\rangle = \int_Y T(f)g\,d\mathbf{v} = \int_X f\,T^t(g)\,d\boldsymbol{\mu} = \langle f,T^t(g)\rangle$$

for all $f \in L^p(X, \mu)$ and all $g \in L^{q'}(Y, \nu)$.

If T is an integral operator of the form

$$T(f)(x) = \int_X K(x, y) f(y) d\mu(y)$$

then T^* and T^t are also integral operators with kernels $K^*(x,y) = \overline{K(y,x)}$ and $K^t(x,y) = K(y,x)$, respectively. If *T* has the form $T(f) = (\widehat{fm})^{\vee}$, that is, it is given by multiplication on the Fourier transform by a (complex-valued) function $\underline{m}(\xi)$, then T^* is given by multiplication on the Fourier transform by the function $\overline{m}(\xi)$. Indeed for f, g in $\mathscr{S}(\mathbb{R}^n)$ we have