To prove this result we need the following proposition, whose proof we postpone until the end of this section.

Proposition 2.4.8. Suppose that u in $\mathscr{S}'(\mathbb{R}^n)$ is a \mathscr{C}^{∞} function on $\mathbb{R}^n \setminus \{0\}$ and homogeneous of degree $z \in \mathbb{C}$. Then \hat{u} is a \mathscr{C}^{∞} function on $\mathbb{R}^n \setminus \{0\}$.

We now prove Proposition 2.4.7 using Proposition 2.4.8.

Proof. Let *a* be the integral of the smooth function *m* over \mathbf{S}^{n-1} . The function m-a is homogeneous of degree zero and thus locally integrable on \mathbf{R}^n ; hence it can be thought of as a tempered distribution that we call \hat{u} (the Fourier transform of a tempered distribution *u*). Since \hat{u} is a \mathscr{C}^{∞} function on $\mathbf{R}^n \setminus \{0\}$, Proposition 2.4.8 implies that *u* is also a \mathscr{C}^{∞} function on $\mathbf{R}^n \setminus \{0\}$. Let Ω be the restriction of *u* on \mathbf{S}^{n-1} . Then Ω is a well defined \mathscr{C}^{∞} function on \mathbf{S}^{n-1} . Since *u* is a homogeneous function of degree -n that coincides with the smooth function Ω on \mathbf{S}^{n-1} , it follows that $u(x) = \Omega(x/|x|)/|x|^n$ for *x* in $\mathbf{R}^n \setminus \{0\}$.

We show that Ω has mean value zero over \mathbf{S}^{n-1} . Pick a nonnegative, radial, smooth, and nonzero function ψ on \mathbf{R}^n supported in the annulus 1 < |x| < 2. Switching to polar coordinates, we write

$$\begin{aligned} \left\langle u,\psi\right\rangle &= \int_{\mathbf{R}^n} \frac{\Omega(x/|x|)}{|x|^n} \psi(x) \, dx = c_{\psi} \int_{\mathbf{S}^{n-1}} \Omega(\theta) \, d\theta, \\ \left\langle u,\psi\right\rangle &= \left\langle \widehat{u},\widehat{\psi}\right\rangle = \int_{\mathbf{R}^n} (m(\xi)-a) \, \widehat{\psi}(\xi) \, d\xi = c'_{\psi} \int_{\mathbf{S}^{n-1}} \left(m(\theta)-a\right) \, d\theta = 0, \end{aligned}$$

and thus Ω has mean value zero over \mathbf{S}^{n-1} (since $c_{\Psi} \neq 0$).

We can now legitimately define the distribution W_{Ω} , which coincides with the function $\Omega(x/|x|)/|x|^n$ on $\mathbb{R}^n \setminus \{0\}$. But the distribution u also coincides with this function on $\mathbb{R}^n \setminus \{0\}$. It follows that $u - W_{\Omega}$ is supported at the origin. Proposition 2.4.1 now gives that $u - W_{\Omega}$ is a sum of derivatives of Dirac masses. Since both distributions are homogeneous of degree -n, it follows that

$$u - W_{\Omega} = c \delta_0$$
.

But $u = (m-a)^{\vee} = m^{\vee} - a\delta_0$, and thus $m^{\vee} = (c+a)\delta_0 + W_{\Omega}$. This proves the proposition.

We now turn to the proof of Proposition 2.4.8.

Proof. Let $u \in \mathscr{S}'$ be homogeneous of degree z and \mathscr{C}^{∞} on $\mathbb{R}^n \setminus \{0\}$. We need to show that \hat{u} is \mathscr{C}^{∞} away from the origin. We prove that \hat{u} is \mathscr{C}^M for all M. Fix $M \in \mathbb{Z}^+$ and let α be any multi-index such that

$$|\alpha| > n + M + \operatorname{Re} z. \tag{2.4.14}$$