[*Hint:* Let f_n be a Cauchy sequence in L^p . Pass to a subsequence $\{n_i\}_i$ such that $||f_{n_{i+1}} - f_{n_i}||_{L^p} \le 2^{-i}$. Then the series $f = f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i})$ converges in L^p .] **1.1.9.** Let (X, μ) be a measure space with $\mu(X) < \infty$. Suppose that a sequence of measurable functions f_n on X converges to f μ -a.e. Prove that f_n converges to f in measure.

[*Hint*: For
$$\varepsilon > 0$$
, $\{x \in X : f_n(x) \to f(x)\} \subseteq \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{x \in X : |f_n(x) - f(x)| < \varepsilon \}$.]

1.1.10. Let *f* be a measurable function on (X, μ) such that $d_f(\alpha) < \infty$ for all $\alpha > 0$. Fix $\gamma > 0$ and define $f_{\gamma} = f \chi_{|f| > \gamma}$ and $f^{\gamma} = f - f_{\gamma} = f \chi_{|f| \le \gamma}$. (a) Prove that

$$d_{f\gamma}(lpha) = egin{cases} d_f(lpha) & ext{when} & lpha > \gamma, \ d_f(\gamma) & ext{when} & lpha \leq \gamma, \ \end{array} \ d_{f\gamma}(lpha) = egin{cases} 0 & ext{when} & lpha \geq \gamma \ d_f(lpha) - d_f(\gamma) & ext{when} & lpha < \gamma \end{cases}$$

(b) If $f \in L^p(X, \mu)$ then

$$\begin{split} \left\| f_{\gamma} \right\|_{L^{p}}^{p} &= p \int_{\gamma}^{\infty} \alpha^{p-1} d_{f}(\alpha) \, d\alpha + \gamma^{p} d_{f}(\gamma), \\ \left\| f^{\gamma} \right\|_{L^{p}}^{p} &= p \int_{0}^{\gamma} \alpha^{p-1} d_{f}(\alpha) \, d\alpha - \gamma^{p} d_{f}(\gamma), \\ \int_{\gamma < |f| \le \delta} |f|^{p} \, d\mu &= p \int_{\gamma}^{\delta} d_{f}(\alpha) \alpha^{p-1} \, d\alpha - \delta^{p} d_{f}(\delta) + \gamma^{p} d_{f}(\gamma). \end{split}$$

(c) If f is in $L^{p,\infty}(X,\mu)$ prove that f^{γ} is in $L^q(X,\mu)$ for any q > p and f_{γ} is in $L^q(X,\mu)$ for any q < p. Thus $L^{p,\infty} \subseteq L^{p_0} + L^{p_1}$ when $0 < p_0 < p < p_1 \leq \infty$.

1.1.11. Let (X, μ) be a measure space and let *E* be a subset of *X* with $\mu(E) < \infty$. Assume that *f* is in $L^{p,\infty}(X, \mu)$ for some 0 .(a) Show that for <math>0 < q < p we have

$$\int_{E} |f(x)|^{q} d\mu(x) \leq \frac{p}{p-q} \mu(E)^{1-\frac{q}{p}} ||f||_{L^{p,\infty}}^{q}.$$

(b) Conclude that if $\mu(X) < \infty$ and 0 < q < p, then

$$L^{p}(X,\mu) \subseteq L^{p,\infty}(X,\mu) \subseteq L^{q}(X,\mu).$$

[*Hint*: Part (a): Use $\mu(E \cap \{|f| > \alpha\}) \leq \min(\mu(E), \alpha^{-p} ||f||_{L^{p,\infty}}^p)$.]

1.1.12. (*Normability of weak* L^p for p > 1) Let (X, μ) be a σ -finite measure space and let 0 . Pick <math>0 < r < p and define

$$||| f |||_{L^{p,\infty}} = \sup_{0 < \mu(E) < \infty} \mu(E)^{-\frac{1}{r} + \frac{1}{p}} \left(\int_E |f|^r d\mu \right)^{\frac{1}{r}},$$

14

1.1 L^p and Weak L^p

where the supremum is taken over all measurable subsets *E* of *X* of finite measure. (a) Use Exercise 1.1.11 with q = r to conclude that

$$\left|\left|\left|f\right.\right|\right|_{L^{p,\infty}} \leq \left(\frac{p}{p-r}\right)^{\frac{1}{r}} \left|\left|f\right.\right|\right|_{L^{p,\infty}}$$

for all f in $L^{p,\infty}(X,\mu)$. (It is not needed that X be σ -finite here). (b) Prove that for every measurable function f on (X,μ) we have

$$\left\|f\right\|_{L^{p,\infty}} \le \left\|\left\|f\right\|\right\|_{L^{p,\infty}}.$$

(Y. Oi) Notice that if $X = \{1,2\}$, $\mu(\{1\}) = 1$, $\mu(\{2\}) = \infty$, then X is not σ -finite, and verify that for the function f = 1 the preceding inequality fails.

(c) Show that $L^{p,\infty}(X,\mu)$ is metrizable for all $0 , i.e., there is a metric on the space that generates the same topology as the quasi-norm. Also show that <math>L^{p,\infty}(X,\mu)$ is *normable* when p > 1, i.e., there is a norm on the space equivalent to $\|\cdot\|_{L^{p,\infty}}$. (d) Use the characterization of the weak L^p quasi-norm obtained in parts (a) and (b)

to prove Fatou's lemma for this space: For all measurable functions g_n on X we have

$$\left\| \liminf_{n \to \infty} |g_n| \right\|_{L^{p,\infty}} \le C_p \liminf_{n \to \infty} \left\| g_n \right\|_{L^{p,\infty}}$$

for some constant C_p that depends only on $p \in (0, \infty)$. [*Hint:* Part (b): Write $X = \bigcup_{k=1}^{\infty} X_k$ with $\mu(X_k) < \infty$ and take $E = \{|f| > \alpha\} \cap X_k$.]

1.1.13. Consider the *N*! functions on the line

$$f_{\sigma} = \sum_{j=1}^{N} \frac{N}{\sigma(j)} \chi_{[\frac{j-1}{N}, \frac{j}{N})},$$

where σ is a permutation of the set $\{1, 2, \dots, N\}$.

(a) Show that each f_{σ} satisfies $||f_{\sigma}||_{L^{1,\infty}} = 1$.

(b) Show that $\|\sum_{\sigma \in S_N} f_{\sigma}\|_{L^{1,\infty}} = N! (1 + \frac{1}{2} + \dots + \frac{1}{N}).$

(c) Conclude that the space $L^{1,\infty}(\mathbf{R})$ is not normable (this means that $\|\cdot\|_{L^{1,\infty}}$ is not equivalent to a norm).

(d) Use a similar argument to prove that $L^{1,\infty}(\mathbf{R}^n)$ is not normable by considering the functions

$$f_{\sigma}(x_1,...,x_n) = \sum_{j_1=1}^{N} \cdots \sum_{j_n=1}^{N} \frac{N^n}{\sigma(\tau(j_1,...,j_n))} \chi_{[\frac{j_1-1}{N},\frac{j_1}{N})}(x_1) \cdots \chi_{[\frac{j_n-1}{N},\frac{j_n}{N})}(x_n),$$

where σ is a permutation of the set $\{1, 2, ..., N^n\}$ and τ is a fixed injective map from the set of all *n*-tuples of integers with coordinates $1 \le j \le N$ onto the set $\{1, 2, ..., N^n\}$. One may take

$$\tau(j_1,\ldots,j_n) = j_1 + N(j_2 - 1) + N^2(j_3 - 1) + \cdots + N^{n-1}(j_n - 1),$$

for instance.