To justify the fact concerning the convergence of the Riemann sums, we argue as in the proof of the previous theorem. For each $N=1,2,\ldots$, consider a partition of $[-N,N]^n$ into $(2N^2)^n$ cubes Q_m of side length 1/N and let y_m be the center of each Q_m . For a multi-index α let

$$D_N(\xi) = \sum_{m=1}^{(2N^2)^n} f(y_m)(-2\pi i y_m)^{\alpha} e^{-2\pi i y_m \cdot \xi} |Q_m| - \int_{\mathbf{R}^n} f(x)(-2\pi i x)^{\alpha} e^{-2\pi i x \cdot \xi} dx.$$

We must show that for every M > 0, $\sup_{|\xi| \le M} |D_N(\xi)|$ converges to zero as $N \to \infty$. Setting $g(x) = f(x)(-2\pi i x)^{\alpha}$, we write

$$D_N(\xi) = \sum_{m=1}^{(2N^2)^n} \int_{Q_m} \left[g(y_m) e^{-2\pi i y_m \cdot \xi} - g(x) e^{-2\pi i x \cdot \xi} \right] dx - \int_{([-N,N]^n)^c} g(x) e^{-2\pi i x \cdot \xi} dx.$$

Using the mean value theorem, we bound the absolute value of the expression inside the square brackets by

$$\left(\left|\nabla g(z_m)\right|+2\pi|\xi|\left|g(z_m)\right|\right)\frac{\sqrt{n}}{N}\leq \frac{C_K(1+|\xi|)}{(1+|z_m|)^K}\frac{\sqrt{n}}{N},$$

for some point z_m in the cube Q_m . Since

$$\sum_{m=1}^{(2N^2)^n} \int_{Q_m} \frac{C_K (1+|\xi|)}{(1+|z_m|)^K} dx \le C_K' (1+M) < \infty$$

for
$$|\xi| \leq M$$
, it follows that $\sup_{|\xi| < M} |D_N(\xi)| \to 0$ as $N \to \infty$.

Next we give a proposition that extends the properties of the Fourier transform to tempered distributions.

Proposition 2.3.22. Given u, v in $\mathcal{S}'(\mathbf{R}^n)$, $f_j, f \in \mathcal{S}$, $y \in \mathbf{R}^n$, b a complex scalar, α a multi-index, and a > 0, we have

- (1) $\widehat{u+v} = \widehat{u} + \widehat{v}$.
- (2) $\widehat{bu} = b\widehat{u}$,
- (3) If $f_j \to f$ in \mathscr{S} , then $\widehat{f}_j \to \widehat{f}$ in \mathscr{S} and if $u_j \to u$ in \mathscr{S}' , then $\widehat{u}_j \to \widehat{u}$ in \mathscr{S}' ,
- (4) $(\widetilde{u})^{\hat{}} = (\widehat{u})^{\hat{}}$,
- (5) $(\tau^y u)^{\hat{}} = e^{-2\pi i y \cdot \xi} \widehat{u}$,
- (6) $(e^{2\pi i x \cdot y}u)^{\hat{}} = \tau^y \hat{u}$,
- (7) $(\delta^a u)^{\hat{}} = (\widehat{u})_a = a^{-n} \delta^{a^{-1}} \widehat{u}$,
- (8) $(\partial^{\alpha} u)^{\hat{}} = (2\pi i \xi)^{\alpha} \widehat{u}$,
- (9) $\partial^{\alpha} \widehat{u} = ((-2\pi i x)^{\alpha} u)^{\hat{}}$