But the second integral in the preceding expression is bounded by

$$\int\limits_{([-N,N]^n)^c} \frac{C'''|x|^{|\alpha|}}{(1+|x-y|)^{M/2}} \frac{dy}{(1+|y|)^M} \leq \frac{C'''|x|^{|\alpha|}}{(1+|x|)^{M/2}} \int\limits_{([-N,N]^n)^c} \frac{dy}{(1+|y|)^{M/2}} \, .$$

Using these estimates it is now easy to see that $\lim_{N\to\infty} \sup_{x\in \mathbf{R}^n} |D_N(x)| = 0$.

Next we have the following important result regarding distributions with compact support:

Theorem 2.3.21. If u is in $\mathcal{E}^{I}(\mathbf{R}^{n})$, then \widehat{u} is a real analytic function on \mathbf{R}^{n} . In particular, \widehat{u} is a \mathcal{E}^{∞} function. Furthermore, \widehat{u} and all of its derivatives have polynomial growth at infinity. Moreover, \widehat{u} has a holomorphic extension on \mathbf{C}^{n} .

Proof. Given a distribution u with compact support and a polynomial $p(\xi)$, the action of u on the \mathscr{C}^{∞} function $\xi \mapsto p(\xi)e^{-2\pi ix \cdot \xi}$ is a well defined function of x, which we denote by $u(p(\cdot)e^{-2\pi ix \cdot (\cdot)})$. Here x is an element of \mathbf{R}^n but the same assertion is valid if $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$ is replaced by $z = (z_1, \ldots, z_n) \in \mathbf{C}^n$. In this case we define the dot product of ξ and z via $\xi \cdot z = \sum_{k=1}^n \xi_k z_k$.

It is straightforward to verify that the function of $z = (z_1, \dots, z_n)$

$$F(z) = u(e^{-2\pi i(\cdot)\cdot z})$$

defined on \mathbb{C}^n is holomorphic, in fact entire. Indeed, the continuity and linearity of u and the fact that $(e^{-2\pi i \xi_j h} - 1)/h \to -2\pi i \xi_j$ in $\mathscr{C}^{\infty}(\mathbb{R}^n)$ as $h \to 0$, $h \in \mathbb{C}$, imply that F is holomorphic in every variable and its derivative with respect to z_j is the action of the distribution u to the \mathscr{C}^{∞} function

$$\xi \mapsto (-2\pi i \xi_j) e^{-2\pi i \sum_{j=1}^n \xi_j z_j}.$$

By induction it follows that for all multi-indices α we have

$$\partial_{z_1}^{\alpha_1}\cdots\partial_{z_n}^{\alpha_n}F=u\big((-2\pi i(\cdot))^{\alpha}e^{-2\pi i\sum_{j=1}^n(\cdot)z_j}\big).$$

Since F is entire, its restriction on \mathbf{R}^n , i.e., $F(x_1, \dots, x_n)$, where $x_j = \text{Re } z_j$, is real analytic. Also, an easy calculation using (2.3.4) and Leibniz's rule yield that the restriction of F on \mathbf{R}^n and all of its derivatives have polynomial growth at infinity.

Now for f in $\mathscr{S}(\mathbf{R}^n)$ we have

$$\left\langle \widehat{u}, f \right\rangle = \left\langle u, \widehat{f} \right\rangle = u \left(\int_{\mathbf{R}^n} f(x) e^{-2\pi i x \cdot \xi} \, dx \right) = \int_{\mathbf{R}^n} f(x) u(e^{-2\pi i x \cdot (\cdot)}) \, dx \,,$$

provided we can justify the passage of u inside the integral. The reason for this is that the Riemann sums of the integral of $f(x)e^{-2\pi ix \cdot \xi}$ over \mathbf{R}^n converge to it in the topology of \mathscr{C}^{∞} , and thus the linear functional u can be interchanged with the integral. We conclude that the tempered distribution \widehat{u} can be identified with the real analytic function $x \mapsto F(x)$ whose derivatives have polynomial growth at infinity.