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Theorem 2.3.20. If u € . and ¢ € .7, then @ *u is a €* function and
(@xu)(x) = (u,T°9)

for all x € R". Moreover, there is a positive constant m and for all multi-indices o
there exists a constant Cy, such that

0% (@*u)(x)] < Ca(1+|x])".

Furthermore, if u has compact support, then ¢ xu is a Schwartz function.

Proof. Let v be in . (R"). We have
(@xu,y) = (u,¢xy)
—u( [, 7o)

—u( [ @) @320

= | (0 29)v0)ay

where the last step is justified by the continuity of # and by the fact that the Riemann
sums of the inner integral in (2.3.20) converge to that integral in the topology of .7,
a fact that will be justified later. This calculation identifies ¢ * u with the function

(@xu)(x) = (u, Q). (2.3.21)

We now show that (¢ *u)(x) is a € function. Let e; = (0,...,1,...,0) with 1
in the jth entry and zero elsewhere. Then

T (@ xu)(x) — (@ *u)(x) _ <u_ T/1e/1X¢T’Y(ﬁ> N <u *&ifx(ﬁ>

h h
by the continuity of u and the fact that (7"% (7)) — t°¢) /h tends to —9;7°¢ =
7°(d;p) in 7 as h — 0; see Exercise 2.3.5 (a). This gives d;(¢ *u) = d;¢ *u and
a similar calculation for higher-order derivatives shows that ¢ xu € > and that

d7(@ xu) = (d7@) * u for all multi-indices ¥. It follows from (2.3.3) that for some
C, m, and k we have

0%(pxu)(x)] <C Y sup 175 (9% o))
|y|<mYER"
|BI<k

-C sup |(x+)7(0*P9) ()|
M{:myem (23.22)

|BI<k
<Cu Y sup (1+[x))"(1+y))"[(0“TP @) (v)],
|B|<kYER"

and this clearly implies the claimed polynomial growth of 0% (¢ ) at infinity.
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We now indicate why ¢ *u is Schwartz whenever u has compact support. Apply-
ing estimate (2.3.4) to the function y — ¢@(x —y) yields that

[(w,o(x—)| =l(@*xu)(x)| <C ) sup |9 p(x—y)|

lot|<m |y|<N
for some constants C,m,N. Since for |x| > 2N we have
107 @(x=y)| < Camr(1+[x=y) ™ < Copn(1+x)) ™

it follows that ¢ * u decays rapidly at infinity. Since 97 (@ *u) = (97 @) *u, the same
argument yields that all the derivatives of ¢ * u decay rapidly at infinity; hence @ *u
is a Schwartz function. Incidentally, this argument actually shows that any Schwartz
seminorm of ¢ *u is controlled by a finite sum of Schwartz seminorms of ¢@.

We now return to the point left open concerning the convergence of the Riemann
sums in (2.3.20) in the topology of . (R"). For each N = 1,2, ..., consider a parti-
tion of [~N,N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the center
of each Q,,. For multi-indices a, 8, we must show that

ZNZ)"

Dy(x) = (le x*0P @ (x =y )Y () Q| —/Rnxaafﬁ(x—y)w(y)dy
converges to zero in L (R") as N — co. We have
LGy WOm)I0nl — [ s (r—y)p(r)dy
= | 56 —3m) V(2P @)y

for some & =y+ 6(y,, —), where 6 € [0, 1]. Distributing the gradient to both fac-
tors, we see that the last integrand is at most

Cle \‘“'\[ 1 1
N (14 = &M 2+ 5D

for M large (pick M > 2max{|c|,n}), which in turn is at most

Vod ‘x“od \/ﬁ 1 1 | ||a\ \[ 1 1
N (1+|x|)M/2 (2+|§|)M/2 B N (1 |x)M72 (1 +|y[)M/2

since |y| < ||+ O]y —ym| <|E|++/n/N <|&|+1for N > \/n. Inserting the estimate
obtained for the integrand in the last displayed integral, we obtain

_ / dy / 238G
[-N.N] ([=N.NJ")¢



